- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Comstock, Andrew_H (3)
-
Sun, Dali (3)
-
Cahoon, James_F (2)
-
Christy, Andrew (2)
-
Li, Yi (2)
-
Xiong, Yuzan (2)
-
Yang, Binbin (2)
-
Zhang, Wei (2)
-
Dong, Yun (1)
-
Hu, Ming (1)
-
Jiang, Xiaoning (1)
-
Kumah, Divine (1)
-
Lei, Sidong (1)
-
Liu, Jun (1)
-
Lopez, Rene (1)
-
Negi, Ankit (1)
-
Rodriguez, Alejandro (1)
-
Sun, Rui (1)
-
Wu, Junming (1)
-
Yang, Cong (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Improving the photon-magnon coupling strength can be done by tuning the structure of microwave resonators to better interact with the magnon counterpart. Planar resonators accommodating unconventional photon modes beyond the half- and quarter-wavelength designs have been explored due to their optimized mode profiles and potentials for on-chip integration. Here, we designed and fabricated an actively controlled ring resonator supporting the spoof localized surface plasmons (LSPs), and implemented it in the investigation of photon-magnon coupling for hybrid magnonic applications. We demonstrated gain-assisted photon-magnon coupling with the YIG magnon mode under several different sample geometries. The achieved coupling amplification largely benefits from the high quality factor (Q-factor) due to the additional gain provided by a semiconductor amplifier, which effectively increases the Q-factor from a nearly null state (passive resonance) to more than 1000 for a quadrupole LSP mode. Our results suggest an additional control knob for manipulating photon-magnon coupled systems exploiting external controls of gain and loss.more » « less
-
Xiong, Yuzan; Christy, Andrew; Dong, Yun; Comstock, Andrew_H; Sun, Dali; Li, Yi; Cahoon, James_F; Yang, Binbin; Zhang, Wei (, Physical Review Applied)
-
Negi, Ankit; Rodriguez, Alejandro; Zhang, Xuanyi; Comstock, Andrew_H; Yang, Cong; Sun, Dali; Jiang, Xiaoning; Kumah, Divine; Hu, Ming; Liu, Jun (, Advanced Science)Abstract Nanosized perovskite ferroelectrics are widely employed in several electromechanical, photonics, and thermoelectric applications. Scaling of ferroelectric materials entails a severe reduction in the lattice (phonon) thermal conductivity, particularly at sub‐100 nm length scales. Such thermal conductivity reduction can be accurately predicted using the information of phonon mean free path (MFP) distribution. The current understanding of phonon MFP distribution in perovskite ferroelectrics is still inconclusive despite the critical thermal management implications. Here, high‐quality single‐crystalline barium titanate (BTO) thin films, a representative perovskite ferroelectric material, are grown at several thicknesses. Using experimental thermal conductivity measurements and first‐principles based modeling (including four‐phonon scattering), the phonon MFP distribution is determined in BTO. The simulation results agree with the measured thickness‐dependent thermal conductivity. The results show that the phonons with sub‐100 nm MFP dominate the thermal transport in BTO, and phonons with MFP exceeding 10 nm contribute ≈35% to the total thermal conductivity, in significant contrast to previously published experimental results. The experimentally validated phonon MFP distribution is consistent with the theoretical predictions of other complex crystals with strong anharmonicity. This work paves the way for thermal management in nanostructured and ferroelectric‐domain‐engineered systems for oxide perovskite‐based functional materials.more » « less
An official website of the United States government
